109 research outputs found

    Spatio-temporal patterns and dynamics of net primary productivity for Kazakhstan

    Get PDF
    Monitoring of net primary productivity (NPP) is especially important for the fragile ecosystems in arid and semi-arid regions. Great interest exists in observing large-scale vegetation dynamics and understanding spatial and temporal patterns of NPP in these areas. In this study we present results of NPP obtained with the model BETHY/DLR for Kazakhstan for 2003-2011 and its spatial and temporal dynamics. The spatial distribution of vegetation productivity shows a gradient from North to South and clear differences between individual vegetation classes. The monthly NPP values show the highest productivity in June. Differences between rain-fed and irrigated areas indicate the dependency on water availability. Annual NPP variability was high for agricultural areas, but showed low values for natural vegetation. The analysis of different patterns in vegetation productivity provides valuable information for the identification of regions that are vulnerable to a possible climate change. This information may thus substantially support a sustainable land management

    Mapping pond aquaculture for the entire coastal zone of Asia using high resolution Sentinel-1 and Sentinel-2 data

    Get PDF
    Asia is the world’s most important region for aquaculture and generates almost 90 percent of the total production. The farming of fish and shrimp in land-based aquaculture systems expanded mainly along the shorelines of South Asia, Southeast Asia, and East Asia, and is a primary protein source for millions of people. The production of fish and shrimp in freshwater and brackish water ponds in coastal regions of Asia has increased rapidly since the 1990s due to the rising demand for protein-rich foods from a growing (world) population. The aquaculture sector generates income, employment and contributes to food security, has become a billion-dollar industry with high socio-economic value, but has also led to severe environmental degradation. In this regard, geospatial information on aquaculture can support the management of this growing food sector for the sustainable development of coastal ecosystems, resources and human health. With free and open access to the rapidly growing volume of data from the European Sentinel satellites as well as using machine learning algorithms and cloud computing services, we extracted coastal aquaculture at a continental-scale. We present a multi-sensor approach which utilizes Earth Observation time series data for the mapping of pond aquaculture within the entire Asian coastal zone, defined as a buffer of 200km from the coastline. In this research, we developed an object-based framework to detect and extract aquaculture at single pond level based on temporal features derived from high spatial resolution SAR and optical satellite acquired from the Sentinel-1 and Sentinel-2 satellites. In a second step, we performed spatial and statistical data analyses of the Earth observation derived aquaculture dataset to investigate spatial distribution and to identify production hotspots in various administrative units at regional, national, and sub-national scale

    Synergetic analyses of Earth observation time series on land surface dynamics in large river basins

    Get PDF
    Long-term Earth observation (EO) time series are an inevitable source for past quantification and analysis as well as future forecasting of land surface dynamics. This study investigates the joint use of geoscientific time series over the last two decades, including EO-based MODIS vegetation indices, DLR Global WaterPack, DLR Global SnowPack, and DLR World Settlement Footprint as well as further climate and hydrological variables to quantify and evaluate land surface changes and their potential drivers. For this purpose, we focus on the Indus-Ganges-Brahmaputra-Meghna (IGBM) river basin in South Asia, being the most populated and one of the most diverse river basins worldwide. In detail, it is characterized by multiple climate zones, including arid climate in the west, polar climate in the north, and tropical climate in the south east. Moreover, the northern areas of these river basins are shaped by the Himalayan mountain range, also known as the water tower of Asia, whereas the downstream areas are characterized by fertile soils and intensive agriculture in the Indo-Gangetic Plain, being dominated by extreme rainfalls during southwest summer monsoon. Here, the availability of water is of paramount importance in social, economic, as well as political terms, but threatened by climate change as well as anthropogenic pressure. To enhance the understanding of land surface processes in the IGBM river basin, we apply state-of-the-art time series analysis techniques, including quantification and evaluation of trends and changepoints. Furthermore, we use partial correlation and a causal discovery approach to explore driving factors of land surface change. Changes and patterns are investigated with respect to the prevailing seasons over the study area. Methods were implemented with focus on spatial and temporal transferability to enable further large-scale analysis in the future. Initial results covering the last two decades over the IGBM river basin indicate an increase in greening of vegetation, mostly in areas dominated by croplands. Considering snow cover extent, we observed a decline over the Eastern Himalayas and an increase over the Western Himalayas. Moreover, changes of surface water extent are mixed over the river basin, with negative trends along the Brahmaputra and Ganges rivers and positive trends close to the Bay of Bengal. In addition, preliminary results considering linkages between EO and climate variables reveal strong partial correlation between vegetation and precipitation in western areas, whereas temperature is the dominating climate factor over eastern areas of the IGBM river basin

    Mapping Aquaculture Ponds for the Coastal Zone of Asia with Sentinel-1 and Sentinel-2 Time Series

    Get PDF
    Asia dominates the world’s aquaculture sector, generating almost 90 percent of its total annual global production. Fish, shrimp, and mollusks are mainly farmed in land-based pond aquaculture systems and serve as a primary protein source for millions of people. The total production and area occupied for pond aquaculture has expanded rapidly in coastal regions in Asia since the early 1990s. The growth of aquaculture was mainly boosted by an increasing demand for fish and seafood from a growing world population. The aquaculture sector generates income and employment, contributes to food security, and has become a billion-dollar industry with high socio-economic value, but has also led to severe environmental degradation. In this regard, geospatial information on aquaculture can support the management of this growing food sector for the sustainable development of coastal ecosystems, resources, and human health. With free and open access to the rapidly growing volume of data from the Copernicus Sentinel missions as well as machine learning algorithms and cloud computing services, we extracted coastal aquaculture at a continental scale. We present a multi-sensor approach that utilizes Earth observation time series data for the mapping of pond aquaculture within the entire Asian coastal zone, defined as the onshore area up to 200 km from the coastline. In this research, we developed an object-based framework to detect and extract aquaculture at a single-pond level based on temporal features derived from high-spatial-resolution SAR and optical satellite data acquired from the Sentinel-1 and Sentinel-2 satellites. In a second step, we performed spatial and statistical data analyses of the Earth-observation-derived aquaculture dataset to investigate spatial distribution and identify production hotspots at various administrative units at regional, national, and sub-national scale

    A Review of Earth Observation-Based Drought Studies in Southeast Asia

    Get PDF
    Drought is a recurring natural climatic hazard event over terrestrial land; it poses devastating threats to human health, the economy, and the environment. Given the increasing climate crisis, it is likely that extreme drought phenomena will become more frequent, and their impacts will probably be more devastating. Drought observations from space, therefore, play a key role in dissimilating timely and accurate information to support early warning drought management and mitigation planning, particularly in sparse in-situ data regions. In this paper, we reviewed drought-related studies based on Earth observation (EO) products in Southeast Asia between 2000 and 2021. The results of this review indicated that drought publications in the region are on the increase, with a majority (70%) of the studies being undertaken in Vietnam, Thailand, Malaysia and Indonesia. These countries also accounted for nearly 97% of the economic losses due to drought extremes. Vegetation indices from multispectral optical remote sensing sensors remained a primary source of data for drought monitoring in the region. Many studies (~21%) did not provide accuracy assessment on drought mapping products, while precipitation was the main data source for validation. We observed a positive association between spatial extent and spatial resolution, suggesting that nearly 81% of the articles focused on the local and national scales. Although there was an increase in drought research interest in the region, challenges remain regarding large-area and long time-series drought measurements, the combined drought approach, machine learning-based drought prediction, and the integration of multi-sensor remote sensing products (e.g., Landsat and Sentinel-2). Satellite EO data could be a substantial part of the future efforts that are necessary for mitigating drought-related challenges, ensuring food security, establishing a more sustainable economy, and the preservation of the natural environment in the region

    Remote Sensing for large-scale agricultural investment areas in Ethiopia – agricultural monitoring based on Earth observation time-series

    Get PDF
    Ethiopia is known to be currently food insecure and suffering from considerable food deficits. The Government of Ethiopia strives to increase the agricultural production and its efficiency. Therefore, Ethiopia has been promoting large-scale agricultural investment (LSAI) to transform the agricultural sector. However, the progress by agricultural development has been limited. Investors only developed a small fraction of the transferred land. Therefore, there is a great need for monitoring of the implementation and actual state of land use of every LSAI project. The use of remote sensing can substantially support agricultural monitoring. In this study, Earth observation time series are analyzed to examine the land used for agricultural production and to differentiate crop types grown within the three study areas. Current land use/land cover (LULC) is analyzed using Sentinel-2 time series to identify cropland areas. In a second step, remote-sensing time-series of Sentinel-1 and Sentinel-2 are used to differentiate among 20 different crop types grown in the region. The developed classification methods have been applied to derive information products for three study regions in Ethiopia including the LSAI areas within the provinces of Amhara, Benishangul, and Gambella. The methods and derived information products on LULC and crop types will be made available to GIZ and regional experts to support agricultural monitoring of developed land in Ethiopia

    A First Assessment of Canopy Cover Loss in Germany’s Forests after the 2018–2020 Drought Years

    Get PDF
    Central Europe was hit by several unusually strong periods of drought and heat between 2018 and 2020. These droughts affected forest ecosystems. Cascading effects with bark beetle infestations in spruce stands were fatal to vast forest areas in Germany. We present the first assessment of canopy cover loss in Germany for the period of January 2018–April 2021. Our approach makes use of dense Sentinel-2 and Landsat-8 time-series data. We computed the disturbance index (DI) from the tasseled cap components brightness, greenness, and wetness. Using quantiles, we generated the monthly DI composites and calculated anomalies in a reference period (2017). After applying a threshold, we were able to determine the date of canopy cover loss for all pixels where anomalies were recorded until the end of the observation period. From the resulting map, we calculated the canopy cover loss statistics for administrative entities. Our results show a canopy cover loss of 501,000 ha for Germany, with large regional differences. The losses were largest in central Germany and reached up to two-thirds of coniferous forest loss in some districts. Our map has high spatial (10 m) and temporal (monthly) resolution and can be updated at any time

    Spatial Modelling and Prediction with the Spatio-Temporal Matrix: A Study on Predicting Future Settlement Growth

    Get PDF
    In the past decades, various Earth observation-based time series products have emerged, which have enabled studies and analysis of global change processes. Besides their contribution to understanding past processes, time series datasets hold enormous potential for predictive modeling and thereby meet the demands of decision makers on future scenarios. In order to further exploit these data, a novel pixel-based approach has been introduced, which is the spatio-temporal matrix (STM). The approach integrates the historical characteristics of a specific land cover at a high temporal frequency in order to interpret the spatial and temporal information for the neighborhood of a given target pixel. The provided information can be exploited with common predictive models and algorithms. In this study, this approach was utilized and evaluated for the prediction of future urban/built-settlement growth. Random forest and multi-layer perceptron were employed for the prediction. The tests have been carried out with training strategies based on a one-year and a ten-year time span for the urban agglomerations of Surat (India), Ho-Chi-Minh City (Vietnam), and Abidjan (Ivory Coast). The slope, land use, exclusion, urban, transportation, hillshade (SLEUTH) model was selected as a baseline indicator for the performance evaluation. The statistical results from the receiver operating characteristic curve (ROC) demonstrate a good ability of the STM to facilitate the prediction of future settlement growth and its transferability to different cities, with area under the curve (AUC) values greater than 0.85. Compared with SLEUTH, the STM-based model achieved higher AUC in all of the test cases, while being independent of the additional datasets for the restricted and the preferential development areas
    corecore